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The Born Rule from a Consistency Requirement
on Hidden Measurements in Complex Hilbert Space
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We formalize the hidden measurement approach within the very general notion of an
interactive probability model. We narrow down the model by assuming that the state
space of a physical entity is a complex Hilbert space and introduce the principle of
consistent interaction which effectively partitions the space of apparatus states. The
normalized measure of the set of apparatus states that interact with a pure state giving
rise to a fixed outcome is shown to be in accordance with the probability obtained using
the Born rule.
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1. INTRODUCTION

In Aerts D. (1986), a proposal to answer the question of the arisal of proba-
bilities in quantum mechanics is given. The author argues that probability enters
quantum mechanics because of a lack of knowledge about which measurement
was conducted. Let us briefly outline the scheme as presented in the article to
reproduce the probabilities related to the measurement of an observable A with
n possible alternative (and mutually exclusive) outcomes. The n eigenvectors
{e1, e2, . . . , en} of the operator A that represents the observable A with n possi-
ble outcomes, can serve as a basis for the state of the entity: q = ∑n

i=1〈q, ei〉ei .
Orthodox quantum mechanics dictates that the probability pA

q (ai) of finding the
result ai—one of the eigenvalues {a1, a2, . . . , an} of the eigenvector with the same
index—upon execution of the measurement that corresponds to the observable A
when the entity is in the state q, equals

pA
q (ai) ≡ p(A = ai |q) = |〈q, ei〉|2

This means that the n-tuple

κ = (
pA

q (a1), pA
q (a2), . . . , pA

q (an)
)
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contains all statistical information we can derive from the entity with respect to
the observable A and, we can use κ as a representation of the statistical state.
Because the pA

q (ai) are constrained by the requirement
∑n

i=1 pA
q (ai) = 1, we see

that the statistical state is an element of the (n − 1)-simplex �n−1 in R
n spanned

by the canonical base vectors ei : κ = ∑
i p

A
q (ai)ei . The basic idea of the “hid-

den measurement approach” is to associate with each measurement m a set of
sub-measurements m(λ) such that the measurement m(λ) consists of choosing at
random one of the λ and performing the measurement m(λ) on the entity. The
measurements are to be taken classically deterministic, in the sense that their op-
eration on a fixed state always yields the same result. This is done as follows: take
λ to be an n-tuple from the (n − 1)-simplex: λ = (λ1, . . . , λn),

∑
λi = 1, λi ≥ 0.

Call Ci the convex closure of the set {e1, . . . , ei−1, κ, ei+1, . . . , en}. The out-
come of the measurement m(λ) is determined by λ in the following ad hoc
way: if λ ∈ Ci , then the outcome reads ai. We will not discuss the proce-
dure when the variable λ happens to be chosen on the boundary of one of
the Ci as this is a thin subset only and as such does not contribute to the fi-
nal probabilities. The probability of choosing λ in the simplex Ci is calculated
by assuming a uniform and normalized density for λ over �n−1. Hence, we
obtain

p(λ ∈ Ci |q) = µ(Ci)/µ(�n−1)

where µ, because of the uniform measure, is simply the (n − 1)-dimensional vol-
ume of the respective simplex. This volume is proportional to both the measure
of any of its (n − 2)-dimensional faces and to the length of the orthogonal projec-
tion of its “height” onto this face. Hence, we can easily see that the volumes of
the simplices are proportional to the projections of the statistical state κ onto the
base vectors. It is a matter of straightforward determinant calculus to show that
µ(Ci)/µ(�n−1) = pA

q (ai), and hence we have

p(A = ai |q) = p(λ ∈ Ci |q)

The result is deceivingly simple and it is difficult to imagine a shorter exposition of
the well-known fact that there exist hidden variable models of quantum mechanics
if one restricts the latter to measurements related to a single observable. This
strength is immediately also a weakness of the exposition: the state of the entity
is identified with the statistical state, or the set of probabilities related to a single
observable, whereas in quantum mechanics we are able—at least in principle—to
apply Dirac transformations to calculate the probabilities related to all observables
we choose to measure. It is not obvious how to transform the state in the simplex
when we want to measure a different observable. Is it possible to extend the
procedure and make it work in Hilbert space rather than in the simplex? In the
original article such an example is indeed given, but it relates only to a two-
dimensional problem. However, the two-dimensional case is in some sense a



The Born Rule and Hidden Measurements 1001

degenerate case: the possibility of sub-measurements is excluded and the Gleason
theorem applies only from dimension three or higher. The latter fact has sometimes
been related to the existence of hidden variable models for measurements with
only two outcomes. To counter this objection, a three-dimensional model in a real
Hilbert space (Aerts et al., 1997a) was constructed. However, this model is much
more complicated and ad-hoc than the original model and did not give a hint as to
how and if the scheme would work in complex Hilbert space. Although a model
in complex Hilbert space was lacking, interesting results in other directions where
obtained. For example, the question of the generality of the measure theoretic
construction was dealt with in a lattice-theoretic model for an experiment with
a possibly infinite number of outcomes (Coecke, 1995). The two dimensional
model easily allowed for parametrization of the lack of knowledge, engaging us
to study the behavior of between quantum and classical descriptions by means of
statistical polytopes and the violation of the axioms of quantum logic. We refer to
(Aerts et al., 1997b, c; 1999) and the references found there.

The present article aims at resolving two issues. The first one, raised at the
end of the 1986 paper, is how to characterize the measurements that occur in a
hidden measurement scheme. Can we give a less ad-hoc description of the way a
measurement selects an outcome when it interacts with a state? The second issue
is concerned with the realization of such a scheme in complex Hilbert space. More
precisely, we will put forward a principle that partitions the set of measurements
such that the measure of the set of apparatus states that actualize a fixed outcome
if in interaction with a system in a pure state, is shown to be equal to the modulus
squared of the inner product of the state of the entity with the eigenstate belonging
to that particular outcome.

2. LACK OF KNOWLEDGE IN AN INTERACTIVE SET-UP

We will first recast the hidden measurement idea into the more general and
abstract notion of an interactive system. In essence, we assume the observer is
in a state a ∈ M , and the thing he observes is in a state q ∈ �. Furthermore, we
assume the existence of a rule of interaction “i” that gives us the outcome x ∈ X

as a result of the interaction between the two states q and a:

i : � × M → X, i(q, a) = x

We want this model to be deterministic, hence the mapping i is a function.
Furthermore, we want every possible outcome x to be the result of an in-
teraction between an entity and a measurement apparatus, hence we also re-
quire i to be surjective. Of course, surjectivity implies the possibility that dif-
ferent couples (q, a) lead to the same outcome: i−1(x) = {(q, a) ∈ � × M :
i(q, a) = x}.
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Suppose that we have a lack of knowledge about the precise state of the
system and apparatus. With B(�) (and B(M)) the Borel field of σ -additive subsets
of � (and M), our experiment is characterized by two probability measures: µ�

as a probability measure B(�) → [0, 1] and µM as probability measure B(M) →
[0, 1]:

P� = (�,B(�), µ�)

PM = (M,B(M), µM )

The way the system and the apparatus interact is goverened solely by the function
i: the measures themselves are independent. To define the probability of the
occurrence of an outcome, we assume i is a measurable function and as such, the
interaction i becomes a random variable from � × M onto X. First we need a few
definitions (all sets are assumed to be non-empty):

Definition 1. An interactive probability model is a quadruple (P�,PM,X, i)
with

P� = (�,B(�), µ�), a probability space of a set of entity-states �,
PM = (M,B(M), µM ), a probability space of a set of apparatus-states M ,
a non-empty set X called the outcome space, and
a random variable i : � × M → X, called the interaction.

Definition 2. A preparation π = (ψq,ψa) is an ensemble of entity states ψq ∈
B(�) and an ensemble of apparatus states ψa ∈ B(M).

The odds of picking a certain system state out of the ensemble ψq and picking
one apparatus state out of ψa, is determined independently by the measures µ�

and µM , respectively.
Following standard probability theory, we construct the product space

P�×M = (� × M,B(�) × B(M), ρ). The measures µ� and µM induce the
unique product probability measure ρ : B(�) × B(M) → [0, 1], such that
ρ(ψq,ψa) = µ�(ψq)µM (ψa). This leads to the following definition:

Definition 3. Given an interactive probability model (P�,PM,X, i) and a prepa-
ration π = (ψq,ψa) ∈ B(�) × B(M), the interactive probability of the occurrence
of the outcome x is

p(x | π ) = 1

ρ(ψq,ψa)

∫
i−1(x)

dρ

We stress that this definition of the probability allows for a completely natural
lack of knowledge interpretation: any arising probability in the occurrence of
outcomes is a consequence of the inability to prepare identical states for either
the system, the apparatus, or both. This point is crucial. If we have an irreducible
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uncertainty about the way we study nature, it will be impossible to give a direct
operational meaning to both (�,B(�), µ�) and (M,B(M), µM ). We have to
derive (�,B(�), µ�) and (M,B(M), µM ) indirectly from the interpretation of
p(x | π ) as comming from an interactive probability model (P�,PM,X, i). The
absence of an operational definition can then be justified on principle grounds, but
only if the interactive probabilistic scheme we propose is considered plausible.

3. HIDDEN MEASUREMENTS IN HILBERT SPACE

We now turn our attention to the measurement of observables with n distinct
outcomes, such as the observables related to a spin-n model or to an array of n

distinct detectors in a position measurement scheme. We will assume that the state
space of both the entity and the apparatus is complex Hilbert space. We start by
ascribing a state vector a ∈ HA to the measurement apparatus A and a state vector
q ∈ HS to the system S. Next we assume there exists a deterministic interaction i

that decides which outcome xk from an outcome set X = {x1, x2, . . . , xn} occurs
as a result of an interaction between the states of the system and the apparatus

i : HS × HA → X, i(q, a) = x

The state of the apparatus, having much more degrees of freedom than the system
it is made to measure, lives in a much bigger Hilbert space, so it is natural to
assume dim(HA) � dim(HS). However, all results presented in this article follow
if the density of the apparatus states is proportional to the area of the subset an
n-dimensional subspace where we impose the principle of consistent interaction.
In the conclusion we briefly touch upon the fact that this assumption is a necessity
following from an unbiasedness of the apparatus. Hence for the purpose of the
present derivation we need only assume dim(HA) equals dim(HS). Having said
this, let Hn denote the set of unit-norm members of an n-dimensional Hilbert
space over the field of complex numbers and let q and a belong to this space.
Hence i is a function: i : Hn × Hn → X. Next we connect states to outcomes by
means of the concept of an eigenvector.

Definition 4. A set E = {e1, . . . , en} ⊂ Hn of n orthogonal vectors is called a
set of eigenvectors iff ∀ek, el ∈ E:

〈ek, el〉 = δk,l

i(ek, a) = xk,∀a ∈ Hn

The vectors ek play the role of eigenstates for the observable that corresponds
to the measurement being made in the sense that, if the entity happens to be in one
of the states ek , it does not matter with which apparatus state it interacts; it will
always yield the same result and this result depends only on the eigenstate of the
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entity. We know from quantum mechanics the vectors with the desired property
(i(ek, a) = xk,∀a) are indeed simply the eigenvectors of the self-adjoint operator
corresponding to the relevant observable, but as we did not assume that a self-
adjoint operator represents the measurement of an observable, we have imposed
this separately. Troughout the rest of the article, indices can take natural values up
to n only.

3.1. THE PRINCIPLE OF CONSISTENT INTERACTION

To determine the action of i, we first define an important set of vectors that
we (in absence of a better name), call a “modulus great circle segment”:

〈ek � a〉 ≡ {c ∈ Hn : |cj | = √
s|aj |, j �= k,

|ck| =
√

(1 − s) + s|ak|2, 0 < s < 1}
So the set of vectors 〈ek � a〉 are those unit vectors in Hn for which the modulus of
each component equals the downscaled modulus of each component of c (except
for cj ) by a factor

√
s. The last remaining component cj simply follows from the

normalization requirement on c. It is easy to see that this is indeed a segment of a
great circle in the positive 2n-tant of R

n, obtained by taking the modulus of each
component of a vector on the unit sphere in C

n, hence the name “modulus great
circle segment”.

Definition 5. We say the interaction i : Hn × Hn → X obeys the principle of
consistent interaction (PCI) iff ∀xk ∈ X; q, a, a′ ∈ Hn, er , ek ∈ E:

i(q, a) = xk ⇒ i(q, a′) = xk,∀a′ ∈ 〈er � a〉, ek �= er

In words, the principle of consistent interaction says that, for a fixed state q

of the entity, if the interaction with an apparatus state a gives rise to an outcome
xk , then so does the interaction with any other apparatus state a′ that belongs
to the “modulus great circle segments” between the apparatus state a and any
eigenvector belonging to another outcome than xk . We will first discuss some
mathematical consequences of this principle and postpone a possible interpretation
to the concluding section of this paper. The sets 〈er � a〉 constitute only a thin
subset of the state space Hn of the apparatus. Nevertheless, it is evident that the
principle poses a severe constraint on the set of possible partitions of this space.
To see just how constraining the PCI is, let us investigate it by means of the
component-wise product of a complex vector with its complex conjugate that
sends elements of the complex unit-sphere Sn = {z ∈ C

n :
∑n

i=1 ziz
∗
i = 1} onto

the (n − 1)-simplex �n−1 = {x ∈ R
n
+ :

∑n
i=1 xi = 1} :

τ : Sn → �n−1
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τ (z) = (z1z
∗
1, z2z

∗
2, . . . , znz

∗
n)

Let us translate the PCI to the simplex by means of τ . A simple calculation shows
that τ (〈er � a〉) =]τ (er ), τ (a)[, that is, τ maps “modulus great circle segments” to
open line-segments in �n−1. The translation of the PCI to the simplex �n−1 then
reads:

i(τ (q), τ (a)) = xk ⇒ i(τ (q), τ (a′)) = xk,∀τ (a′) ∈]τ (er ), τ (a)[, τ (ek) �= τ (er )

It is not difficult to define a partition in the simplex that is consistent with the PCI.
We denote by ]A[, the relative interior of the convex closure of A, and define (with
slight abuse of the notation C

q

k rather than C
τ (q)
k ) the sets

C
q

k =]x1, . . . , xk−1, τ (q), xk+1, . . . , xn[

This division of �n−1 into separate sets C
q

k takes the form of a special type of
triangulation, which is a simple generalization of a barycentric division, and is in
fact affinely isomorphic to it. We have encountered this particular partition in the
Introduction. Just as was the case there, assume now that the interaction i in the
simplex is defined as follows:

τ (a) ∈ C
q

k ⇒ i(τ (q), τ (a)) = xk

It is easy to see that for every mapped apparatus state τ (a) ∈ C
q

k we indeed have that
]τ (ek), τ (a)[⊂ C

q

k . Hence, elements of ]τ (ek), τ (a)[ also give rise to an outcome
xk, and as such are in accordance with the PCI. Likewise, we can see that for every
a ∈ τ−1(Cq

k ), we have that 〈er � a〉 ⊂ τ−1(Cq

k ) leading to the same conclusion.
One can easily convince oneself intuitively that no other partition of the set of
apparatus states can satisfy the PCI, and refer the interested reader to (Aerts,
2002), where a full proof, utilising mainly elementary convex geometry, can be
found. Note that ∪kτ

−1(Cq

k ) = Hn\M0, where M0 = ∪k∂[τ−1(Cq

k )]2 is the set of
boundaries of the closure of the sets τ−1(Cq

k ). Clearly M0 is a null set with respect
to an n-measure. Hence, for probabilistic purposes, the τ−1(Cq

k ), k = 1, . . . , n

constitute what one might call an “effective partition” or a “partition modulo
null-sets” of the complex unit sphere.

4. THE BORN RULE

What constitutes a good measurement? Well, to be sure, a measurement setup
is supposed to give maximal information about the state of the entity it is observing
and minimal information about the state of the apparatus. For the probability space
P� related to the entity, this means that µ� becomes a point measure and hence

2 It was pointed out to me by T. Durt that the set M0 and the set of points of unstable equilibrium in
the Bohm–Bub hidden variable model (Bohm and Bub, 1966) coincide, showing there is a definite
and close relation between the two approaches.
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the ensemble ψq reduces to a singleton. By a well-known theorem in information
theory we have that, minimization of the information in the probability space PM

related to the apparatus, µM becomes a uniform measure and the ensemble ψa the
whole Hilbert space Hn. It turns out that under these two assumptions, together
with the PCI, we recover the Born rule.

Theorem 1. Given an Interactive Probability Model (PHn
,PHn

, X, i) in com-
plex Hilbert space with i satisfying the PCI. Assume the preparation B(�) ×
B(M) � π = (q,Hn) where q is a singleton. With {e1, . . . , en} a set of eigenvec-
tors and ek the eigenvector corresponding to the outcome xk ∈ X, we have:

p(xk |π ) = |〈q, ek〉|2

Proof: We start with the definition of the interactive probability under the as-
sumptions of the theorem

p(xk | π ) = 1

ρ(q,Hn)

∫
i−1(xk)

dρ

= µ�(q)

µ�(q)µM (Hn)

∫
τ−1(Cq

k )
dµM

= µM (τ−1(Cq

k ))

µM (Hn)

This last equation simply tells us that the probability of getting the outcome xk

equals the ratio of the apparatus states that result in that outcome to the total of all
possible apparatus states. The calculation of the quantity µM (τ−1(Cq

k )) is greatly
facilitated by realizing τ preserves probability measures. In virtue of a lemma
presented after this argument, the last expression becomes

ν(Cq

k )

ν(�n−1)

The calculation of this last quantity was outlined in the introduction of this article
and demonstrated explicitely in (Aerts, 1986).

= τ (q) · τ (ek) = qkq
∗
k

= |〈q, ek〉|2

�
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Lemma 1. Let (�n−1,B(�n−1), µ) and (Sn,B(Sn), ν) be the two measure
spaces. Then for A ∈ B(�n−1) and τ−1(A) ∈ B(Sn), we have

ν(τ−1(A)) = 2πn

√
n

µ(A)

Proof: Let A be an arbitrary open convex set in �1: A = {(x1, x2) : a < x1 <

b, x2 = 1 − x1}. Evidently, µ(A) = √
2(b − a). Let B be the pull-back of A under

τ as

B = {(z1, z2) ∈ Z1 × Z2 ⊂ C
2 : Z1 = {z1 : a < |z1|2 < b},

Z2 = {z2 : z2 =
√

1 − |z1|2eiθ , θ ∈ [0, 2π [}}
Clearly,

ν(B) = ν(Z1)ν(Z2) = π (b − a)2π = 2π2

√
2

µ(A)

�

Hence the theorem holds for convex sets if n = 2. This conclusion can readily
be extended to an arbitrary (n − 1)-dimensional rectangleset A in �n−1 :

A =
{ (

x1, . . . , xn−1, 1 −
n−1∑
i=1

xi

)
: ∀i

= 1, . . . , n − 1 : ai < xi < bi ; ai, bi ∈ [0, 1]

}
Its measure factorizes into

µ(A) = √
n

n−1∏
i=1

(bi − ai)

Next, consider n-tuples of complex numbers

B = {(z1, z2, . . . , zn) ∈ Z1 × · · · × Zn}
Zi = {zi ∈ C : ai < |zi |2 < bi, i �= n},
zn =

√
1 − |z1|2 − · · · − |zn−1|2eiθn , θn ∈ [0, 2π [}}

Clearly τ (B) = A. The measure of B can be factorized as

ν(B) = ν(Z1)ν(Z2), . . . , ν(Zn)

= 2π

n−1∏
i=1

π (bi − ai) = 2πn

√
n

µ(A)
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Hence the theorem holds for an arbitrary rectangleset A. But every open set in
�n−1 can be written as a pair-wise disjoint countable union of rectangular sets. It
follows that ν(τ−1(·)) = 2πn√

n
µ(·) for all open sets in �n−1. Both ν and µ are finite

Borel measures because �n−1 and Sn are both compact subsets of a vectorspace
of countable dimension. Therefore, they must be regular measures. But a regular
measure is completely defined by its behavior on open sets. Hence the theorem
holds for Borel sets. �

5. CONCLUDING REMARKS

Besides the fact that the PCI defines the partition of the set of apparatus states,
it is also interpretable as some sort of “proposal-consistent-answer-game”. To see
this, make the comparison with the well-known game of “warm” and “cold”. The
object of the game is to guess the location of an unknown object in a room, using
the clues “warmer” and “colder” given by someone who knows the location of
the object. The equivalent of the PCI for this game would be that if the guesser in
his next guess is further from the object than a former guess, his reply has to be
“colder”. Imagine now a straightforward multi-dimensional generalization of the
game played in the (n − 1)-simplex, and with as possible answers the n vertices
of the simplex. The state vector a, then represents the measurement apparatus and
is a “proposal” both to the state and for the state, as if the measurement asks the
question: can you give me a clue about your true location if my guess would be
that it is somewhere here you are residing? Now the entity, in response to that
proposal has to give a hint about its true location by giving the unique outcome
that is in accordance with the PCI. This answer can only be one of the n outcomes
corresponding to the eigenvectors and, seen from the point of view of the guesser
(the apparatus), it gives n alternative directions to choose from. The PCI does not
tell what happens when the next guess is closer to the eigenvector corresponding to
the outcome given to the former guess. It doesn’t need to. What the PCI requires,
is that the response of the entity is such that if the answer was “vertex xi” and
the guesser chooses to ignore that directional hint and places his guess closer in
the direction of another vertex (rather than closer to vertex xi) the answer will
still have to be xi . Once you think of it this way, the PCI indeed expresses a very
basic form of consistency, and it is nice to see that this condition alone partitions
the set of apparatus states. As such the PCI seems to show a relationship between
the geometry of Hilbert space and the probabilistic inferences made therein. The
model we propose in the case of quantum mechanics differs from the game of
warm and cold, in that, each new interaction forgets the outcome that was given in
response to the interaction with a former apparatus state. This is connected to the
minimization of the information regarding the interactional part of the apparatus
state and the corresponding uniform density of states. It is also essentially a matter
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of the apparatus being unbiased: the apparatus should not be more sensitive to
some states than to others, nor should it know in advance which entity state is
going to be presented to it. Together, these assumptions led us to the Born rule.
Mathematically speaking, Gleason’s theorem gives you more for less, apparently
rendering the result redundant. However, we have gained an interpretation. If there
is in nature something like “the observer and the observed together producing the
phenomenon,” then we believe the scheme outlined here is sensible, and, as we
hope to have shown, not too dificult to translate to complex Hilbert space to recover
the Born rule by an integration over unknown observer states, in accordance with
the original hidden measurement proposal.
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Aerts, D., Aerts, S., Durt, T., and Lévêque, O. (1999). Classical and quantum probability in the ε-model.
International Journal of Theoritical Physics 38, 407.

Bohm, D. and Bub, J. (1966). A proposed solution of the measurement problem in quantum mechanics
by a hidden variable model. Review of Modern Physics 38, 453–469.

Coecke, B. (1995). Generalization of the proof on the existence of hidden measurements to experiments
with an infinite set of outcomes. Foundation of Physics Letters 8, 437–447.


